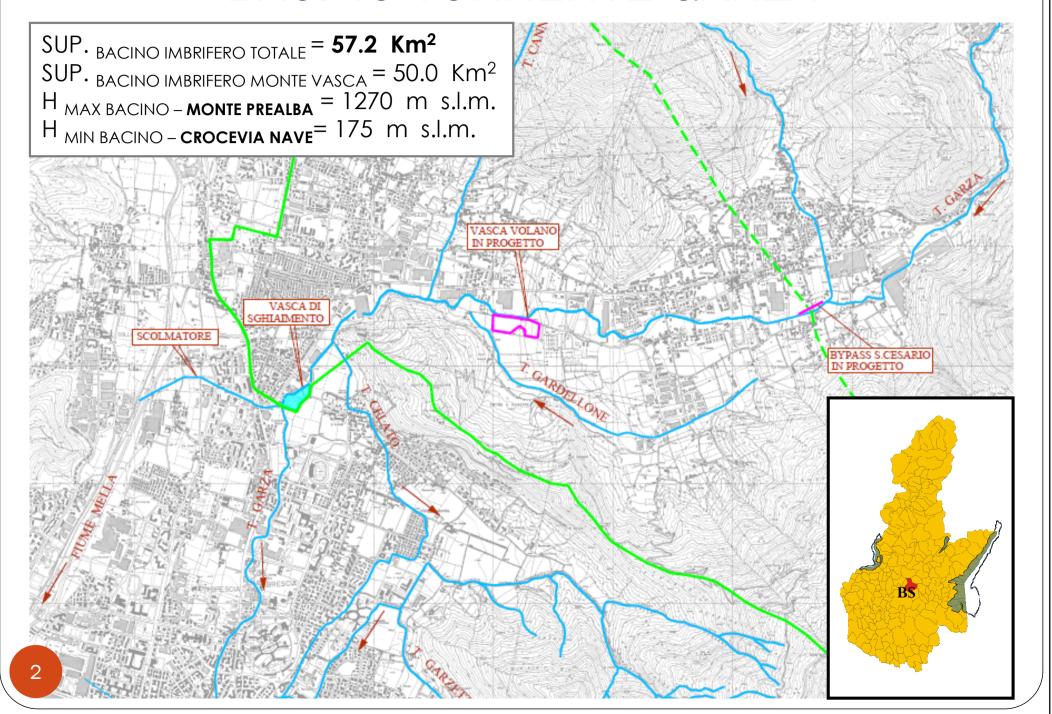
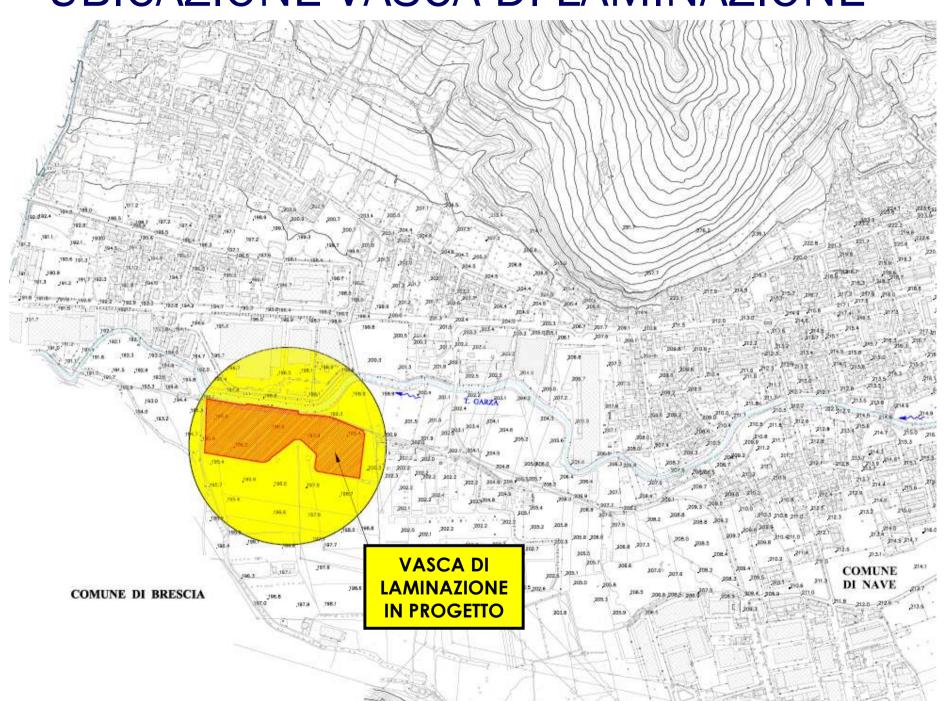


SISTEMAZIONE IDRAULICA DEL TORRENTE GARZA NEL COMUNE DI NAVE (BS)

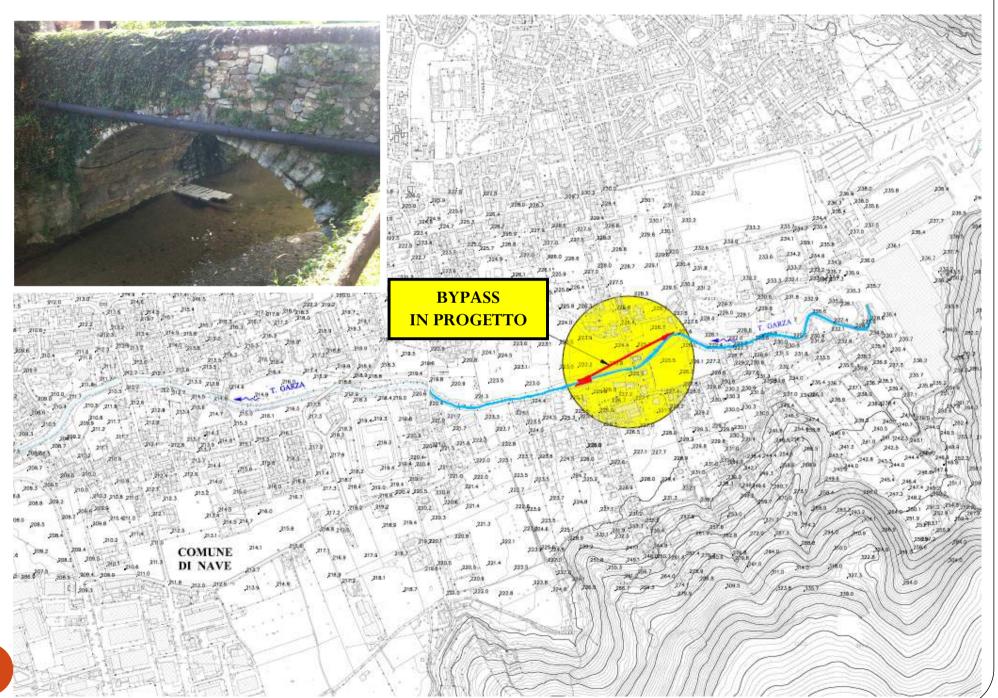
ENTE ATTUATORE:


COMUNE DI NAVE (BS)
ASSESSORATO AI LAVORI PUBBLICI
U.O. TECNICA LAVORI PUBBLICI
RUP: Geom. Michele Rossetti

PROGETTISTI:


PROF. ING. BALDASSARE BACCHI STUDIO TACCOLINI INGEGNERI ASSOCIATI (Ing. Sergio Taccolini- Ing. Fabio Gagni)

Brescia, 22.05.2014


BACINO TORRENTE GARZA

UBICAZIONE VASCA DI LAMINAZIONE

UBICAZIONE BYPASS SAN CESARIO

LA VASCA DI LAMINAZIONE IN PROGETTO VOLUME UTILE INVASO: 144.000 m³ a quota +198.00 m s.l.m. min 195.85m) CON N. 4 PARATOIE MANUALI 60X60cm NUOVA VASCA IN PROGETTO

IL BYPASS DEL PONTE SAN CESARIO LUNGHEZZA CANALE: ~220m SCATOLARE BxH=3.0x2.0m

DATI CARATTERISTICI DELL'OPERA

INVASO

- **Quota fondo vasca:** m +193.00 s.l.m. (da +193.70 a +193.00 m s.l.m.)
- Quota sommità argine: m +199.30 s.l.m.
- **Quota piano campagna:** da m +200.05 s.l.m. a m +196.20 s.l.m. (quota più depressa del p.c.)
- Quota di massimo invaso: m +197.93 s.l.m. (evento di piena con TR100)
- Quota massima di regolazione: +197.85 s.l.m.(quota estradosso traversa sul T. Garza)
- Quota sfioratore di emergenza: +198.00 s.l.m.(quota sommità sfioratore)
- Volume complessivo di invaso: 141.000 mc (volume compreso tra la quota di massimo invaso Tr100 +197.93 m s.l.m. e quota minima della vasca pari a +193.00 m s.l.m.)
- Volume di invaso: 62.887 m³ (volume compreso tra la quota più alta degli sfioratori +198.00 m. s.l.m. e la quota più depressa del piano campagna pari a +196.20 m. s.l.m.)
- Superficie dello specchio liquido alla quota di massimo invaso: mq 34.500 (alla quota +197.93 m s.l.m.)
- Tempo di svuotamento del bacino alla quota di massimo invaso: h 19 (apertura graduale delle 4 paratoie con sfasamento di 1 ora) (Sino a quota +196.75 m s.l.m. lo svuotamento avviene dal manufatto di derivazione) (circa 98.000 mc evacuati dal manufatto di scarico circa 43.000 mc dalla derivazione)

DATI CARATTERISTICI DELL'OPERA

SBARRAMENTO

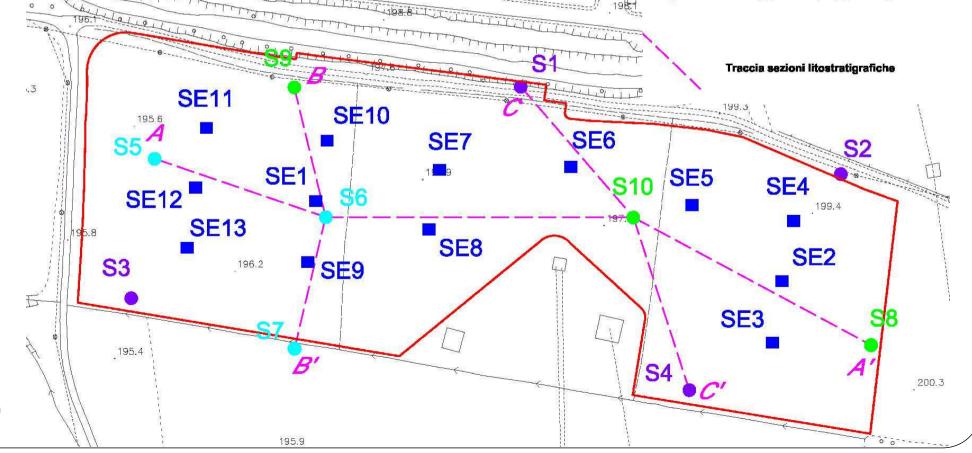
- Altezza dello sbarramento: m 3.10 (quota sommità argine pari a +199.30 m. s.l.m. piano campagna più depresso pari a +196.20).
- Altezza massima di ritenuta: m 3.55 (quota di max invaso Tr100 +197.93 fondo alveo più depresso a valle sfioratore di emergenza +194.38 m s.l.m.)
- Quota di massimo invaso: m +197.93 s.l.m. (evento di piena con TR100)
- Franco: m 1.37
 (quota sommità argine +199.30 m s.l.m.
 quota max invaso Tr100 +197.93 m.s.l.m).
- Franco netto: m 1.37-0.63/2 = 1.05 m
- Sviluppo del coronamento: m 560 (lunghezza del tratto arginato della vasca)
- Larghezza del coronamento: m. 4.0
- Volume dello sbarramento: mc 62887 (volume compreso dalla quota di sommità dello sfioratore di emergenza pari a +198.00 m s.l.m. e la quota più depressa del piano campagna +196.20)

INQUADRAMENTO GEOLOGICO

- Scavo di numerose trincee esplorative;
- Esecuzione di n. 10 sondaggi geognostici a carotaggio continuo, (4 con piezometri)
- Esecuzione di prove SPT in foro di sondaggio;
- Prove di permeabilità in sito tipo Lefranc (ove possibile a carico costante);
- Prelievo di campioni di terreno per l'esecuzione di prove di laboratorio;
- Analisi per il riutilizzo del materiale per 39 campioni

Scavi esplorativi (Marzo 2013)
con prelievo di campioni ambientali

SE13


S4

S10

Sondaggio a 10 m con piezometro (Maggio 200

Sondaggio a 5 m (Maggio 2004)

Sondaggio a 7 m (Maggio 2004)

INQUADRAMENTO GEOLOGICO

CONCLUSIONI INDAGINI GEOLOGICHE

- •falda sospesa a circa -8.5/10 m dal piano campagna;
- •falda profonda a circa -15/20 m dal piano campagna;
- •sottosuolo costituito da depositi alluvionali del Torrente Garza formati da ghiaie con sabbia limosa e lenti o strati di limo
- argilloso intercalati ai terreni granulari.
- •estrema eterogeneità granulometrica dei depositi naturali: circa il 30% di materiale fine e 70% di terre granulari

ghiaiose e sabbiose

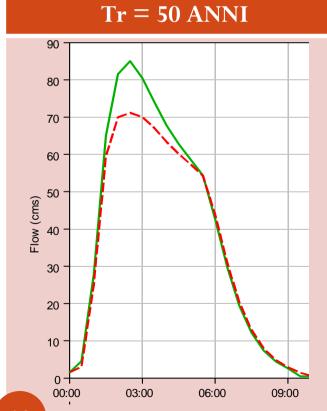
Unità GM-GC — ghiaia sabbiosa, ghiaia e sabbia limosa.

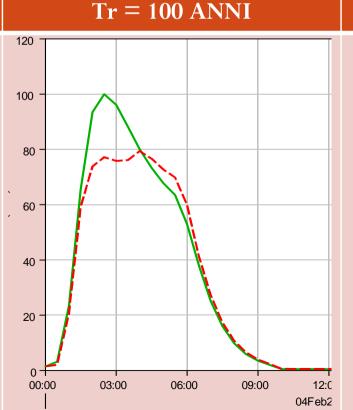
```
\gamma = 18-19 \ KN/m3
angolo di resistenza al taglio = 35°
coesione nulla
permeabilità k = 5 \cdot 10^{-4} m/s
```

Unità ML-CL — limi e argille poco plastiche, peso di volume $\gamma = 17 - 18kN / m3$ angolo di resistenza al taglio = 28° coesione c' = 5kPaPermeabilità $k = 1 \cdot 10^{-5} m/s$

SINTESI DELL'ANALISI IDROLOGICA

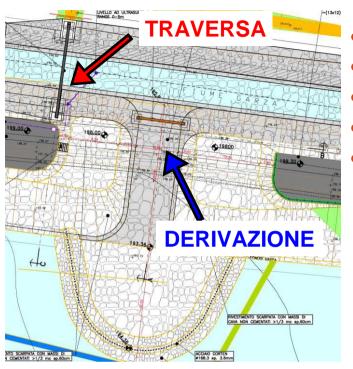
- CURVE DI POSSIBILITA' PLUVIOMETRICA
 - Legge probabilistica di Gumbel con invarianza di scala

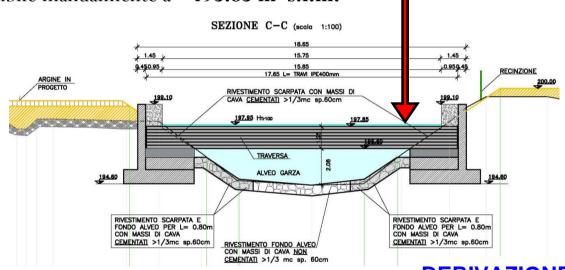

(coefficiente di variazione CV costante per tutte le durate)


- Mappe di m1,n e CV per tutta la provincia di Brescia
- IETOGRAMMA CHICAGO (Tpioggia = 7 ore picco a 0.38)
- DEPURAZIONE PIOGGE CON METODO DEL CN
 - $CN = 75 Ia = 0.20 \cdot S Categoria AMC II Classe suolo C$
- MODELLO DI PIENA NASH (cascata di 2 serbatoi)

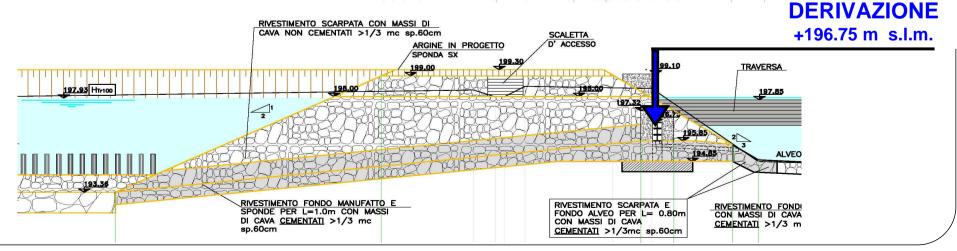
BACINO	A[km ²]	T=10 anni	20	50	100	200
Garza a Crocevia Nave	57.4	55	70	100	120	135
Garza a Nave (vasca)	50	47	60	<u>85</u>	<u>100</u>	<u>115</u>
Garza a San Cesario	40.2	43	55	75	95	105

FUNZIONAMENTO IDRAULICO


ID Simulazione	Condizioni iniziali	Q_{C} $[m^{3}/s]$	$\begin{bmatrix} Q_{LAMa} \\ [m^3/s] \end{bmatrix}$	H max [m s.l.m.]	Vol. Invasato [m³]	Franco [m]
1 - TR 100 anni	VASCA VUOTA	100	80	197.93	141 000	1.37
2 - TR 200 anni	VASCA VUOTA	115	103	198.27	151 500	1.03
3 - TR 50 anni	VASCA VUOTA	85	71	196.80	100 000	2.50
4 - TR 200 anni VASCA PIENA – LUCE OCCLUSA DEL 50%		115	115	198.75	167 000	0.55
5 - TR 20 anni	SFIORO DI DERIVAZIONE RIBASSATO DI 0.90 m (195.75 m s.l.m.)VASCA VUOTA	60	50	196.55	92 000	2.75



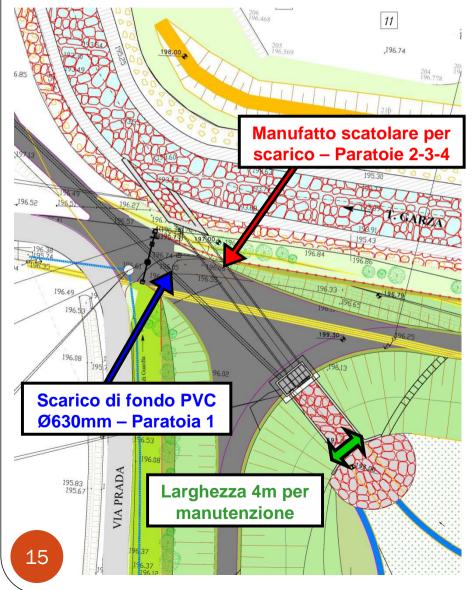
IL MANUFATTO DI DERIVAZIONE

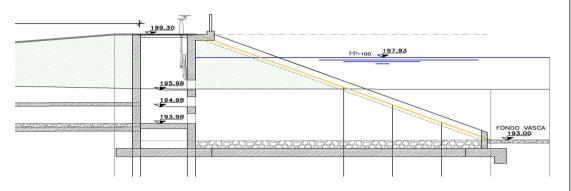

- Porta indisturbata a valle $65 \text{ m}^3/\text{s}$
- Luce libera sotto traversa 1.9 m
- Larghezza superiore traversa 15.85 m
- Quota di massima regolazione +197.85 m s.l.m.

• Quota di derivazione + 196.75 m s.l.m. (Riducibile manualmente a +195.85 m s.l.m.

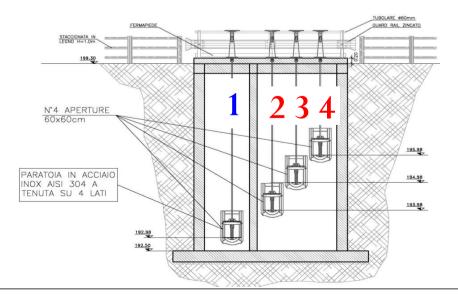
TRAVERSA

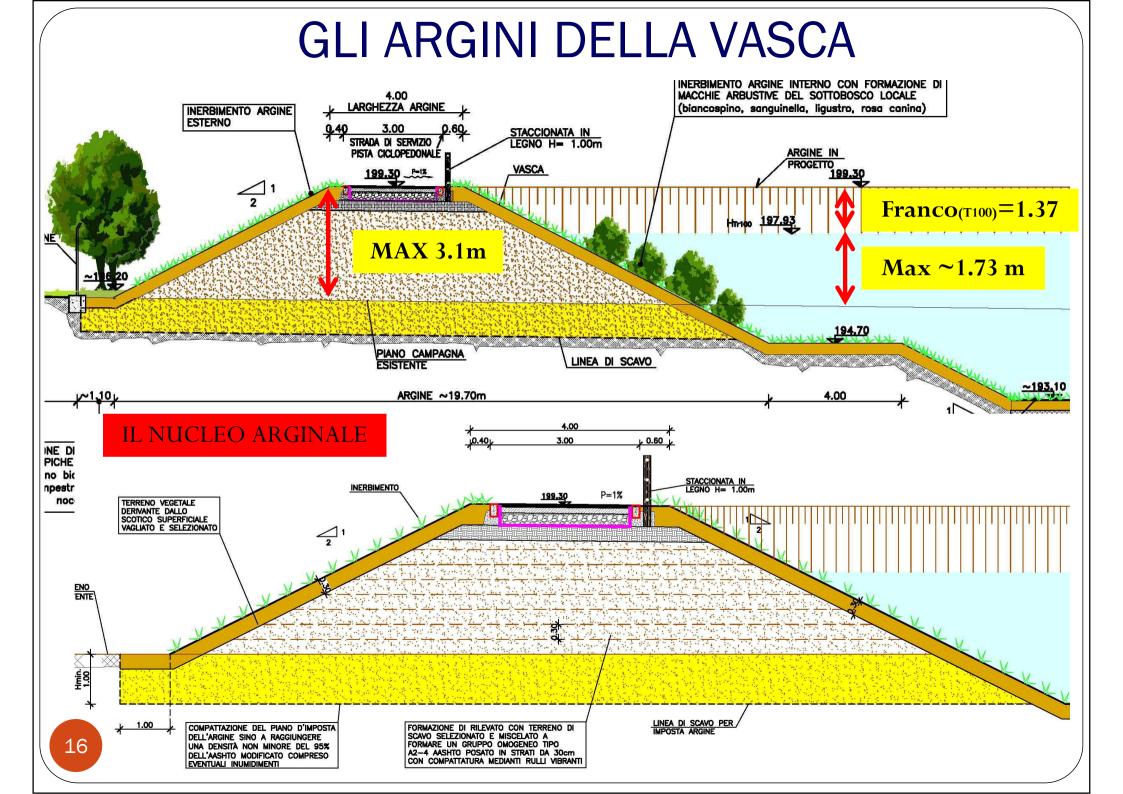
+197.85 m s.l.m.




LO SCARICO DI SUPERFICIE

IL MANUFATTO DI SCARICO

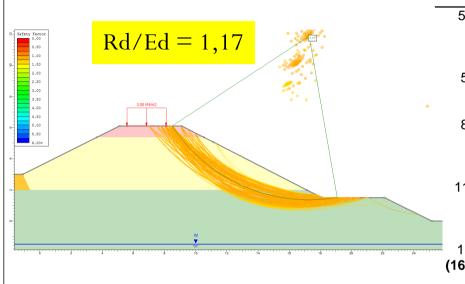

- Manufatto scatolare di scarico 1.00 x 2.25m
- Tubazione scarico di fondo Ø630mm PVC



Quota di attivazione dello scarico di superficie: 196.75 m s.l.m

- h > 196.75 \rightarrow Attivazione scarico di superficie
- h< 196.75 \rightarrow Scarico paratoie
 - Sfasamento di apertura delle paratoie 1/2/3/4 di 1 ora
 - $Q_{MAX CUMULATA} = 3.6 \text{ m}^3/\text{s}$
 - Volume invasato nella vasca fino a quota +196.75 m s.l.m. pari a 98000 m³
 - Svuotamento del 96% in 19 ore

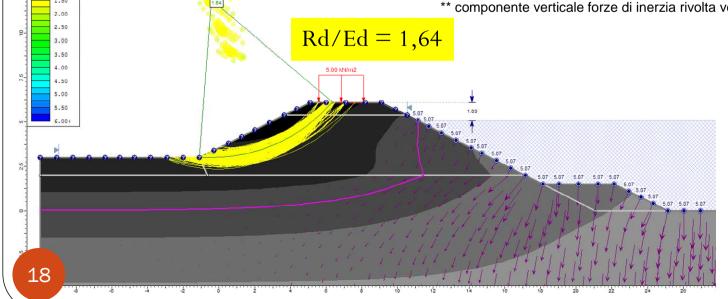
LE VERIFICHE DELLE ARGINATURE (1 di 2)


- CARICHI:
 - VASCA PIENA (EVENTO CON TR 200 ANNI)
 - STRADA DI MANUTENZIONE 10 kN/mq
 - SISMA DIREZIONE X+Y (Met. pseudostatico)
 - Vita nominale della costruzione VN 50 anni
 - Classe d'uso della costruzione II
 - Coefficiente d'uso della costruzione 1,0
 - Categoria di suolo C
 - Categoria topografica T1
 - Tempo di ritorno (per SLV) 475 anni

VERIFICHE DI STABILITA'	CON APPROCCIO 1	COMBINAZIONE 2
(A2+M2+R2)		

•	CONDIZIONI (vasca vuota con sovraccarico-condizione sismica con sovraccarico
	ridotto a 3 kPa –vasca piena Tr200 sovraccarico ridotto a 5 kPa con filtrazione)

Permanent Actions (A)		Partial Factor
Unfavourable	$\gamma_{\rm G}$	i
Favourable	YG	i
Variable Actions (A)	12.000	
Unfavourable	γ,	1.3
Favourable	$\gamma_{\rm q}$	0
Material Parameters (M)		
Effective cohesion	γ.	1.25
Coefficient of shearing resistance	Yø	1,25
Undrained strength	Y.,	1.4
Weight density	Υ/	1
Shear strength (other models)	1.00000	1.25
Resistance (R)		
Earth resistance	$\gamma_{\!\scriptscriptstyle{\mathrm{Re}}}$	1.1
Anchorage (R)		
Tensile and Plate strength	Ya	1,1
Shear strength	Ya	1.1
Compressive strength	Ya	1.1
Bond strength	Ya	1.1
Seismic		
Seismic Coefficient		1


LE VERIFICHE DELLE ARGINATURE (2 di 2)

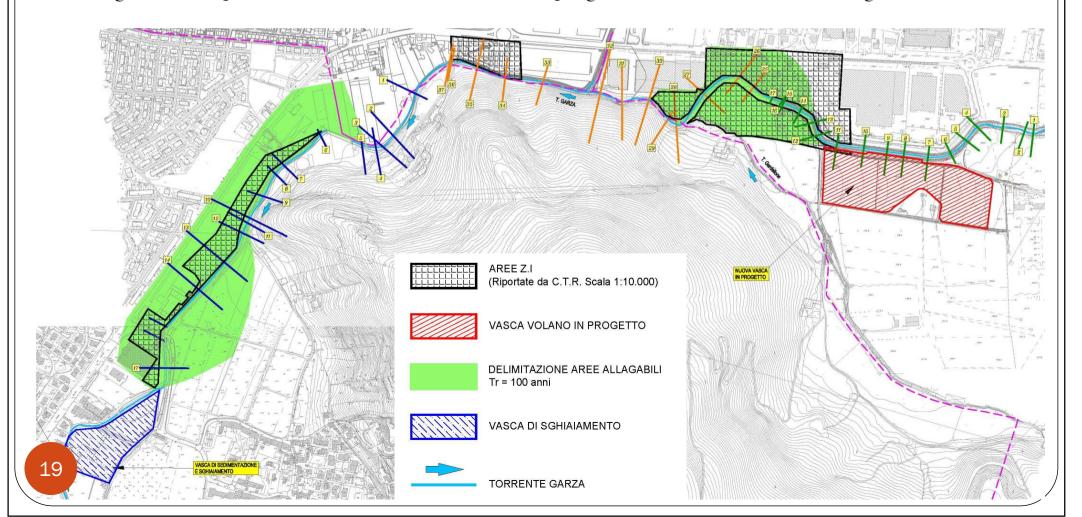
Sezione	Sovraccarico q _k (kPa, valore caratteristico)	Quota falda (m da fondo vasca)	Condizione	Vasca	Coefficiente sicurezza * Rd/Ed
5 Nord	10	1,5	Statica	Vuota	1,22
	3	1,5	Sismica ↓**	Vuota	1,13
	3	1,5	Sismica ↑	Vuota	1,13
	5	0,0	Filtrazione	Piena	1,82
5 Sud	10	1,5	Statica	Vuota	1,17
	3	1,5	Sismica ↓	Vuota	1,06
	3	1,5	Sismica ↑	Vuota	1,06
8 Sud	10	1,5	Statica	Vuota	1,26
	3	1,5	Sismica ↓	Vuota	1,11
	3	1,5	Sismica ↑	Vuota	1,11
	5	0,0	Filtrazione	Piena	1,68
11 Nord	10	1,5 Statica		Vuota	1,24
	3	1,5	Sismica ↓	Vuota	1,11
	3	1,5	Sismica ↑	Vuota	1,12
	5	0,0	Filtrazione	Piena	1,61
= 11 Sud	10	1,5	Statica	Vuota	1,57
(16 Ovest)	10	1,5	Statica	Vuota	1,32
-	3	1,5	Sismica ↓	Vuota	1,17
	3	1,5	Sismica ↑	Vuota	1,17
	5	0,0	Filtrazione	Piena	1,64

^{*} valutato secondo le NTC 2008, combinazione A2+M2+R2

^{**} componente verticale forze di inerzia rivolta verso il basso (\(\) o verso l'alto (\(\))

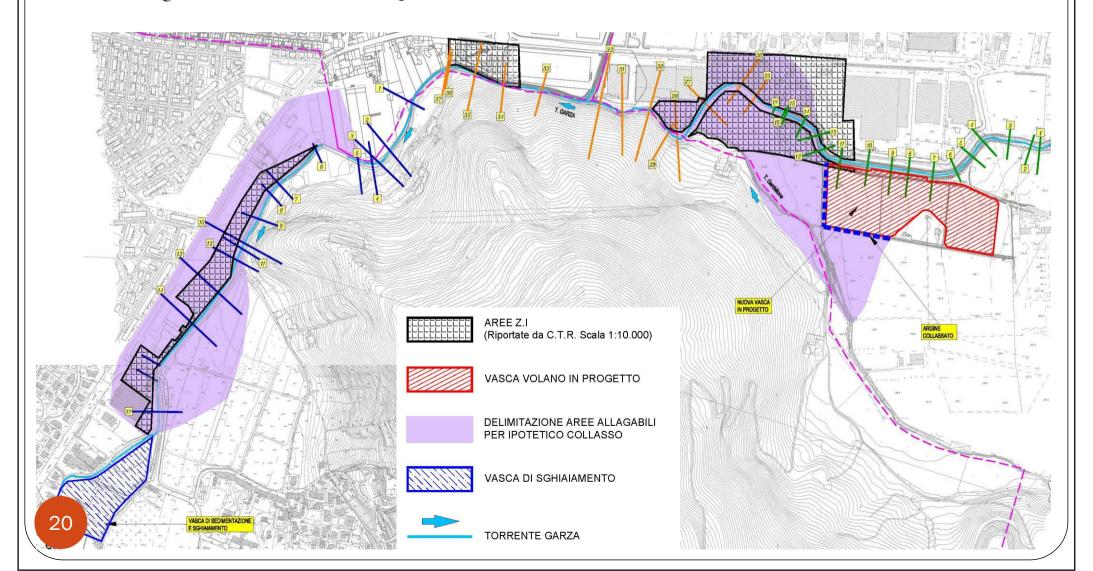
NUCLEO ARGINALE

$$\gamma = 19 \ KN/m3$$


$$\phi$$
 ' = 32°

$$c'=5 \text{ kPa}$$

$$k = 5 \cdot 10^{-4} m/s$$


LE VERIFICHE DI DEFLUSSO A VALLE

- Verifica per tempo di ritorno Tr = 100anni Vasca inizialmente vuota: livello 193.00 m s.l.m.
- Franco di sicurezza della vasca 1.37m Sfioratore di emergenza non attivo
- Volume massimo invasato 141.000 m³
- Q_{MAX} a monte della vasca **100 m³/s** Q_{MAX} a valle della vasca **80 m³/s**
- Manufatti idraulicamente insufficienti: N°4 ponti Tombinatura 64m Passerella pedonale
- Allagamenti in sponda DX e SX a valle della vasca in progetto e a monte della vasca di sghiaiamento

LE VERIFICHE PER IPOTETICO COLLASSO

- Ipotesi di crollo istantaneo di circa 30 ml di argine
- Portata massima risultante $Q_{MAX} = 130 \text{ m}^3 / \text{s}$ per una tempo di svuotamento di circa 8 min
- Volume di invaso superiore al piano campagna pari a **63.000 m**³
- Aree di allagamento simili a eventi di piena Tr=100 anni con incremento di aree esondate a valle della vasca

QUADRO ECONOMICO DELL'OPERA

DESCRIZIONE		IMPORTO
Lav ori v asca di laminazione	€	2.083.000,00
Lav ori bypass S. Cesario	€	530.000,00
Oneri per la sicurezza	€	42.000,00
Totale lavori	€	2.655.000,00
Indagini geologiche e archeologiche	€	48.751,76
allacciamenti sottoservizi	€	116.378,25
imprevisti	€	9.925,77
acquisizione aree	€	767.419,84
spese tecniche	€	265.772,00
spese per gara d'appalto	€	2.500,00
collaudi	€	20.000,00
iva 22% sulle opere	€	584.100,00
fondo accordi bonari	€	79.650,00
spese per commissario	€	45.954,50
IMPORTO TOTALE DELL'OPERA	€	4.595.452,12

Info:

Comune di Nave (BS)
Assessorato ai Lavori Pubblici
Unità Organizzativa Tecnica Lavori Pubblici
tel. 0302537435-436
mail: lavoripubblici@comune.nave.bs.it